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.mSTR:\;T -- 

xe csteud ocr prcviuus :,wIysis of 11e3vy particle 

effects in !ow energy light parricle scitor ‘cc quanr~:m 

chrmodyas‘ni is. The central rechniqt!- used is Ward- 

Takahast,I idcntfties due to Bccchi-Rotee-Scorn ~ransformactons. 

Sonc discussion of isolation of mass singularities is 

given. AI-, importnnt result in our approach. DS before, 

is to give prccfsc mcaning t- the notioc of an effcctivc 

Lacrsngian (which is rcnormali:ed) with calculable cftcctiva 

coup1 ing constants. The counter terms for ;ke effective 

local vertices in the Lagranginn are s‘elf-generated by the 

theoq, while the effective coupling constants ohey a set 

ui Callan-Sywnrik-like equations. The present article is 

self-conta’ned. 



I;. !STRODUCTIC!i 

1 rr. sever31 arriclc‘s rcccnrly urirrcn by us, 3 iu:malisa 

~35 laid. through which one can sysrem~ic~~?y ~3 reliably 

invcsciga;c effects of heavy ?orricles on Ilg!:t r,rrcrite 

seizor ia Iorr ener);y rcgicn. This is done \.rja f~c:~-‘-eAI .__ L 

!ccal o?crsrors wirh calculah:e univcrszl ;ocificic?rs. 

n precise defir.Crioa of 31: cifw~ivc kgrangiar. :s ttcs givera. 

Although these same results are snricipated In rhccr:ies 

wCzt,out spootancously broken symmetry, the csncrece audcl 

sxdied i.xs qu~rwi elec::odyzanics (QSD) wiih heavy 

mxns 3rd ?i$kK c~e.zil-oxls 3rd phora?.s. 

Ir. view of 0.c heightezx2 ~rc!r.ise of qcir.;;:;c c~rcrcc- 

dyxamics (C)CD) as a vf;ble ~hecry of scror,2 Lnzcrsc;Son, 

ix is of same urgency that we should expiicirly deao~ctrszc 

the validity of our technique in this arena. One cm then 

cificieatLy assess effects of heavy quarks in prccesscs 

below their production thresholds. This we have succeeded 

fn doing. The formal aspects will be given in the present 

article; in a sequel, we shall report on a detailed 

calculstion with application to e*c* total annihilation 

cross-section. 

In I, it is established that if M is the generic 

UPSS of the heavy particles, If.all the external ~lomenta 

of the proper amputate& n bight particle Green’s function 



rn are mail compare& EO H, and if the scale N at which :t 

is subtracted ior renormalirarion is also small (p c:< 31. 

then WC’ have2*s 

ra 
fulf theory 

w 4 
‘light theory 

l -$ 1 ci riight theory (Oi) + ow41 

i 
U-11 

where “full theory’ means that the defining Lagrangian 

includes both the heavy and the light fields, and ‘light 

theory’ hai bnly light components. Ci*s have ali the Iargo 

mass dcpcnd&nce in the form of Ln(X*) and arc calculable 

via a set of Callin-Symantik-like equations! Oi’s aro 

(intcgratcd)‘local operators whose densities have naive 

dimensions less than or equal to six. 

There arc fwo elements in I on which variation and/or 

improvement iwargumenr seem desirable in extending our 

analysis to QCD. It should be helpful to have a procedure 

which encompasses both gauge invariance and renormalization 

simultaneously. (In I. these two aspects were implemented 

somcuhat indcpendcntly.) We would also like to give an 

explicit discussion of how infrared ond collinear sinpularitios 

are isolated in the context of QCD. 

A major difference between QED and QCD is their 

distinct gauge transformation properties. For tbo Abelian 

gauge theory, tho Word-Takahashi (W-T) identitier era 



1:nez.r 3rd simple. This s110\;e: us ix Y to imnose gauge 

iws:-iaxe with ezse. Ic focc, oi*s 3re all aanifrsr?y 

gage invariant in QED. 

hhc, ;C coccs GO QCC, cite x6-AbeLian xzure “f Ehe 

gocge traxform3:tons lea& co X-T identities which ire 

essentially non-linear. ?his zakes an atrack on the 

present problem via the Zimme:ma~n’sSanalysis as I : 2 

impractical. As fr surx out. because we arc incercszed 

only in l/M* effects, it is possible to linearize the W-T 

identities in loop erpansion. In point of facz, the H-T 

identities together witch power counting are stifficicnr to 

establish Eq. (1) in QCD. Needless to say, in hind-sight, 

one can do likewise for QED. 

Another technical point which needs some modification 

in QCD is the renormalization procedure. In I, the 

fermions are assumed to be massive. There is no collinear 

singularity and we conveniently choose to renormalire 

the operators at zero external momenta, which is the most 

natural point in the context of timmermann’s analysis. 

This we cannot do in QCD. We must renormalize at some 

Eucledean point up which will fnevitably induce operators 

of dimension four together with those of dimension six. 

How these lower dimension operators are renormalired will 

havo to be considered. 



The.relevant observation to make in order to by-pass 

this apparent complication is the following: it should be 

noted that the right hand side of Eq. (1) is mcroly an 

algebraic rearrangement of a renormalized series, i.e. 

r2ull theory’ 
In other words. we are adding and subtracting 

the same quantities order by order in Tnfull theory. This is 

ho\; the effective Zocal operators Oi are induced and the 

coefficients Ci extracted. Thus. we may choose as we please 

how to render Oi finite. irrespective of how rn are 

reno:malired. The nozaalization conditions on P1,ll theory 

and rligkc theory are all we need to define the rrnormalfzation . 
procedure _ 

The plan af rhis paper is as follows: In the next 

section, we shall briefly review the Becchi-Rouet-Stora 

(BRS) transforaation.6 The aim is to establish notations 

and to derive the U-T identities. 

In Section III, we shall assume the validity of certain 

pouer counting results. ,which can be straightforwardly 

inferred from our argument in I. Then, we shall derive 

Eq. (1) inductively by loop expansion. We shall see that 

the local operators are precisely the set dictated by X-T 

identities. Some remarks on infrared and collinear 

singularity factorization will be made here, 

In Section IV, we shall write down a set of renormalization 

group equations for Cl’s’ Only massloss light quarks will be 

considered, _ 
. 

A brief conclusion will bo givon in Soctfon Y. 



ET. WARD-TAKAIIASHI IlXNTITIES 

In this section we shalI develop notations for QCD 

and discuss BRs trax.formatiaxs, which will give us a SC: 

.of local N-T identities. 

the ~CIX~KK~A ~~II.X~KCZS for rhe fur,dmenral ;epresentatlon 

in M(N), to which the quark fields $,(a = 1,X) belong, are 

x,/2 (2 - 1, N’-1). They ss:i sfy the cozzzutaric~ re12cion 

A- 
[Xa/2. Lb/t) - 2i fabc + (XX-l) 

where fabs are the toczlly scrisyumrrfc rctl s:xct~~t 

consrar.Ks. We introduce the antiherzirix. ra:rices 

T - X,/E. (XX-Z) 2 

:o form rhe matrix fields 

;Il - Apa, 

! - F - ‘;&. 
**” A c & 
C’CI P 00 c-c? 

88 
(II-S) 

0. 
where c,, and ?a are, respectively, the ghost and the antighost 

fields. The covariant derivative is 

$=a, A ‘ go+l [II-r) 

The QCD Lagrangirn in linear gauges is 

%ff - I l Tr [~~,~"") + $ (ib-m,li 

+ k Tr(a,,i”)’ l 2 Tr& a,, [6ve;]) (IX-S) 
.e 

where rhe trace is taken over the internal symmetry. He 
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put c3rets.m indicate uge:ator fields. h’e teed notassigr. 

an i&ex for flavors at this stage. This Lagraagian is’ 
invariant unde: the BRS transforzrtiocr6 

m 
5% - [+6x , 

a,; - g, G ; 6X, 6&g - g, $ ; 6X, 

a,; - ; 6, I;.;1 61, 

a,t I. - l auiv 6A (1X-6) 
=0 

where 61 is en anticommuting global gauge function which 

carries a ghost number -1. 

It proves convenient to introduce sources into the 

theory tp;facilitare construction of Green’s functions and 

discussion of gouge properties. Thus, we write 
7 

z.” &eff + ds. + Zc.f. (X1-7) 

where 

L 
5. 

. Jaiu + ii 
IJa Ai - l % “0 

. 

l en ca l 2a E, (11-E) 

contains sources for the primary fields. and 

Ic 
-u 

C.S. --X;W’.cn*~,~ o -‘I l 0 ra, 
1.. . I 

~mPoCe+oo3c~ (II-S) 

has sources which induce composite operators appearing ia 

. BRS transformations of Eq. (X1-6). 



The gc:.eratixg fmctionsl is defit.ed 5s 

‘L- dA dc 2Z d$ dv exp :‘i/ dJx L1 (11-10) 

while the conr.ecred gemratfng iunctioinl is 

H - -s en z (1X-11) 

After identifying the classical fields (withow carets) 
~ 

9S 

(II-12) 

we make a Legendre transformrion 

rs - w - 
I 

d4x ~J,“A”, + Fa ca + Fa f, 

+ “, JI, l 0, nJ (11-15) 

uhich is a functional that generates proper wputated 

Green’s functions. 

The relations dual to Eq. (II-121 are 

br' J;‘..- 
6h; 

(II-141 



It is noted thar the BRS transformations are nilpotent 

with respek to A,,, G, $, and ;. i.e. 

6; iv - 63 - b;$ -6c*0 ;- (11-S) 

This has the consequence of leaving AC s invariant. . . 
Therefore. z change of fields according to Eq. (21-6) 

will only’ change f- in Z. (h the other hand. the value 

of Z should remain the same. because the Jacobion is wiry. 

This leads KO 

o- I d.i di d? di d$ exp fi 
I 

d4xZ). 

. d4x &i;[&:], - ; go - - 
. 

c~*godcn 

*La;;~~-~l Q. uaa a-z go 
which is the same 8s 

I d”x ~,;L;,, 6;;;x) l 

U 8 

+ 6r’ 6T’ 
BC,(X) iqG7 

[{.Ql (II-163 

6l” bl” kr’ 6;’ --*-- 
6+(x1 6%~) 6m(x) biG(x) 

Using the same line of nrgunent. uo obtnin on equntion 

of motion for the ghost field by making 8 chnnge of vnrinble 
L . 

.~*~‘*S~ 

0 - 
I 

6 d; d? d$ d$ exp fi d’x d) ’ 

or 

l t a&;I, - .{*I (11-18) 
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;iL_- 6r’ 

us; EF 3 

(11-19) 

Ihis last equation, together with the following 

definition 

r- 7’ - &- (i&l2 (1X-20) 
0 

gives. us the fundamenssl H-T identities for QCD 

0. d4x(i&A+wL+iLLdL~ 
s 

v *a sl” ES 2 

~11-21) 

. Yn a compact vocation, there are writter. as 

r*:-o (X1-32) 

So far, we have been &sling with bare qcsnriries. 

Their renormalizarioc in rhe presence of exrerzal sources 
7D8 has bden thoroughly discussed in the literature. Zn brief. 

it ii done muItiplicatively according to 

4 - ni; 
1 
c-xc -R 

i - t-2, iR 

go - (x/n i, gRs n* - 2 2 (X1-23) 

The sources for the primary fields are scaled in a manner 

to make f of Eq. (X1-8) form invariant. i.e. 
‘R J,, - JJbz 

C,-c~/Z, n,-ni/fl, [11:24) 



The renormalircd proper amputared Green’s functions then 

have the desired norailiration at the positions of the 

&articles. 

The composite operator v&ices are renormalired so 

. that H-T identities remain as thsy appear in Eq. (X1-21). 

This is accomplished through 

K; 
- Ji (Ky8)R 

m. F mR 
d- (II-X) 

t 

tie shall assume in the following that this renormalization 

program has been applied loopwise for the Green’s functions. 

NC sha21 drop the superscript R in the following sections; 

all operators there are understood to have been properly 

renormslited. unless specified otherwise. 
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IIl. PROOF OF FACTORIZATION VIA WARD-TXKAliASIiI IDESTITIES 

L~K us suppose that the Lagrangian conrains borh 

light nnd heavy quarks. Ow attention will be fosussed 

‘on those Green”- functions with only light quarks ;r~d gluons. 

For example, in e*c- + hadrons. when the energy of the virtual 

Photon is less than, say. 2 GcV, the relevant heavy quark is 

c. while the light quarks are u,d,s. h’e also need rhe photon 

. in this case; but since it vi-- 11 be introduced minimally, we 

s,ay as well work with QCD alone at shis formal level. 

NC shall cse rilded q~s~riries KO der.oKe Kkose ifi Kche 

full theory and untilded to denote the CorrespondiGg ones 

in the light Theory. 

As said earlier, it will be presently assumed Khat she 

renormalized generating functionals have been constructed 

to all orders in loop expansion. i.e. 

;I- ? ‘(n) (111-l) 

r- i-Or 
n-0 (n) 

(III -‘I 

where the subscript (n) specifies the order of loops to 

which the quantities are calculated. These generating 

functionals have as their arguments classical fields and 

conposits sources. However’s in Eq. (111-l). we are to 

disregard all those terms which contain classical fields of 
. 

the heavy quarks. This is in accordance with our intent to 
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sruly Green’s functions with light iCeIds mly. .4n i;rsedis:e 

consequence is rhsr. 0. 5;. m. and z appearing Fa W-T 

idenriries of Eq. (II-21) pertain to light quarks only. 

xt :S convenicat to introdcce sou:ce term in the 

Iagrongian of the light theory 

I d4x +ight theory + I d4x %ght theory . + E Ni *i 

where Si are global parameters snd Oi am the operators 

oppropriare for EQ. (I-I), which will be further elucidated 

later on. Then 

r (Oil - & I- 1 INi. 
Operator insertions as above. require edditi’onal renormalization 

which is well understood. ‘.‘tIere we assume that this has been 

done and we will come back to this issue in the next 

section. In the following, to save writing, it will be 

assumed that Ni is set to pero after differentiation 

b/d Ni has been applied. 

Since EQ. (X-1) is independent of the number of 

external light lines, then it is P statement of the 

generating functional 

r -r+ EC,?+ i (III-S) 

NOW, let us accept that ;is. (I-1) is true at the 

n-lcop livel. i.e. 



r(:l) 
(!I!-6) 

where Cij) is L see cf ioefiiiienrs calcu:tred 3r. ;% 

j-:oGp ?cvcl. This is ierta;r.ly txe at tke tree level 

wizh CCO) - 0. We proceed ‘;i show that ES. :1-X: ks:ds 

also a?. 2-l loop. and rberefore indcctively it is rr~le 

:Gr &?I :OOpS. 

He first observe chat rt.t U-T identities ox ss~is,Lled 

in loop axpansion, AK the n-l loop level. YO have 

n+l 

kia “;k) l ‘(n+l-k) - a+ 
[YIY-74 

, and 

n+1 

t: r(kl l r[n+l-)c) - ” 
(KKY-8) 

k-0 

By extending the power counting argument in 1, we are 

as-Fred that the difference between r (n+l) and ‘(ml) 
in low energy regime is of order l/M2 or smaller, where M. 

is the generic mass of rhe heavy quarks. We express this as 

‘; (n+l) s r(n*l) * l Ar ;;z (n+l)’ (11X-9) 

a 
&T(M) lay deper., on H in powers of ~104 and l/M’, 

Now, Eq. I-‘. 7) is written as 
- - - - 

’ - ‘(0) ’ r(n+lJ + r(n+l)* ‘(0) 

* i G(k, c &l-k) 
k-1 

[rrr-lo) 
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which becomes. upon subsrit&ing EQ. (KII-61 and E’4- (X11-9) 

+ ;’ cr(k) 
k-1 

wl-k 

(r(n+l-k) l $ 1 
6r(n+lsk-j') 

’ ‘i(j) 6Ni 
j’-1 i 

(III-111 

Using.&. (111-8) 3nd dropping O(ld1 terms. this 

is siaplifird inKa 

s 

(3s r(oj * ‘!(n-11 * “(n+I) m r(Ol 

l 

. in which 

n 

1 
k-l 

; 
k-l 

to yield 

k 

1 1 ‘i(j) +F l r(n+l-k)l 

j-l i 

the SUM can be rcarran&ed 

n+l-k k n+l-j 

1 -1 1 
j-1 j-l k-1 

n n k-j 

1 -1 1 
j-l j-l k-j-0 

(1X1-15) 
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0 - T(O) * Ar(,+l) * “I‘(n+l) l rto) 

n n+l-j 

* 1 1 +j) [ I 
r[k) . .L?Lqpl 

k-1 
I 

j-l i 

n-j 6r 
+ 1 e * ‘(wl-k-j)’ 
k-0 

(III-I4) 

Sy differentiathg Eq. (X1:-8) ui+ respect to Nz 

and setting ~~-0 aa? a - a-j. we abtai:: 

-*l-j &r 
1 (+ * r(r,*l-k-j) ” r(k) 

k-0 - 

or 

wl-j 

z 
k-1’ 

I(k) l v1 l n? p ’ ‘(n+l-k- j) 

k-0 

Tbir replacement transforms Eq. (III-141 into 
- 

O ” r(o) l [Arc,,,) - j1l f Cij) l +j) 

* (A$a+r, - ,il ; c:,, ‘w ) l ‘(0) (rrr-r7E 

I 



-16- 

let us go back to the defining equation of the short- 

hand notation (i.e. Eq. (II-22)) and wire out various 

derivatives 

k srbl 
- g =*,. --& -s8c 

am 
(1X1-18) 

Theo. Eq. (111-17) is written 8s 

I 
d’x a (AT;,,1 - 

‘. 

(11X-19) 

where 

s-9 cl 
.:? 1 

‘IO - *Pu.cla -$ + 0 = *, & 
v 

(1X1-20) 

’ 

l 8 va c 6 l ; g [C&l, & 

Go a 

(III-211 

and 

(111-22) 

The cilpotency of + (i.e. i’-0) dictates that the local 
7.8 solutions toEq. (III-19) are either gauge invariant operatora 

with densities 0:’ or operators with densities & FL, where 

it is understood that the former cannot’ be written as the 

latter. Pi are sow polynonrial functionala of the clataical 



fir:& xld somposite ssurces. Seedless to s-y, rhesc densities 

sh@d possess the correct 111355 dimension, r;h:ch is six ir. 

this context. ibis set of operators closes +;r.des rccormrlization. 

AS we promised. we have actually indcrttified what Oi 

should bz i;l Eqs. (III-3.4). Since :he operator basis in 

the solutions of Eq. (IXI-19) is independent of the Loop 

xxmber. they mu-r rhen be trees. In other words. they can 

all be expressed as 

(111-23) 

Xt then follows that the coefficfent functions mulriglied 

to the solutions at the n+l loop level must be evaluated 

at the same loop level, i.e. 

AI(n+l) - ; l % 
f-1 t 

(III-241 

or n*l I 
AF(n*l) - 1 1 Ct(j) 

%;1-31 . 

j-1 i i 
(1X1-25) 

Ibis. when substituted into Eq. (111-8). completes the 

inductive proof 

We would like to address the important issue of infrared 

and collinear singularities. As it is veil-knowt, they 

appear in amplitudes as kn(p’) for p2 a 0,wherepis 

some of the exterala reomenta. Hau ue not been abLe .to 

absorb them properly, then our analysis would have been in 



jeopardy. .This is because operators with 1oga:ithmic 

ver~cx factors, if rhey exist at 311, are simply not local. 

In actuality,these infrared and collinear singularities 

are absorbed by the matrix elements of the operators, 

rn(oi), or equivalentiy 6P/6 xi. It works in such a way. 

chat both AI’“+~ acd ,I. Cij) 6r(n,lmj)/6Ni in Eq. (I!I-19) 
1,) 

my be plagued with these singuiarities. However, they 

cance? OUK coaplerely in the difference, so that the solutions 

as given in Eg. (III-24) are local. 

This pleasing situation arises, because infrared 

and collinear divcrgencos occur when some of chc intornal 

lines become almost physical.’ These coincide with the low 

monentum and low invariant mass regions where effective 

vertices ore introduced. In orher words. 1 i,j +j) sr(nel-j)‘*Ni 
contains all the integration regions which potentially may.. 

give soft divergences in AT(n+l). The difference is then 

free of such malaise. Thereupon, the solutions of Eq. 

(111-19) are local. PI given in Eq. (X11-24). 



IV. REXJMALKZATIOS OF Oi AtiD REZNOMALIZA’XON GROUP FOR ii 

A. RenOrm3liz3KiOn Of Oi 

In the arevious section, we have proved flCKcri33tiOn, 

assuming Khe cxlsrence of some suiroble prscedure which 

sccomplishes Eq. (111-6) in Khc rtnormalized form. In Khe 

proof, especially in going fro= Eq. (11X-S) :c Eq. (III-15). 

it was sssur+ed thar 6r(h,/6Xi cocld be ?rc?er?y rexcz3Lired. 

?k.rr we kve 8.~ hand such a program hasbeen disi-rsed by 

Odei-S. 

h'e want KO 3rgue ir. the Z-Ol~OWi~~ Kh3K Khe COLZIKC: 

rerms inrroduced for opcrarors Of tn f3CK iance! c:cK 

inrernally; Khe relevan: counter hens which need Ko be 

inserred inro Khe Lagracgian are only rhose in Eqs. (11-19. 

24,251. Because of rhis, the scheme for rcnormaliring 

the operators may be quite different from the scheme for 

makIng ordinary Green’s functions finite. 

Our assertion is true for a rather trivial reason. 

We illustrate it with an example. Consider the diagram 

of Fig. 1. Here, R indicates that ordinary renormalizations 

of Eq. (X1-23) have been applied. Let us first project out 

the l/M2 part from the vacuum polarization and extract out 

the associated operator vertices. Then. these operators 

are renormalixod in whatever convenient way we wish.,0 Let 

us donoto this by R'. The original diagram wit1 be redrawn 
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in Fig. Z,,&here Ccl) is the one loop coefficienr funcrion 

and O1 is an induced operator. This is a mere resrrangemenr; 

clearly, tho counter term duo to R’ simplycancelsout and can 

bo rrbitrorily chosen. 

SOY, we look at,what we denote by A1E. Any possible 

infrared or collinear divergence will cancel in this 

combinatien. (Actually. there is none in this example.1 

‘The l/N2 part has a structure which is polynomial in momentum. 

*e extract out the I/M2 part and call the coefficient function 

Cc,) and Khe induced operator Oz. This is depicted in - 
Fig. 5. hoKe how Khis rearrangrmenK scheme is precisely 

of the form dictated by rhe W-T identirics of Eq. (1X1-24). 

.Then, Fig. 1 is redrawn in Fig. 4. Due to the definition of 

C(2)/M * 2 ’ ~A t goes as l/N4 and can be dropped. Thus, we hovo 

connletely factorized out the l/M2 conrributions in this 

example. Eiote that although Ct2, depends on how we choose 

to rcnormalize the operator 01, the sum (C~ll~~t~(Ol) + 

C(2)r(ol (02))/N2 does not. 

This argument can be easikf extended to cover the 

general case. The Important point is that since we are 
- 

ndding‘rero to P, we may split tho zero into any tuo 

parts at our convenience. 
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B. Rcnormalizacion Group Equations For Ci 

Factorization proved in Section III does not necessarily 

insure the calculability of the coefficient functions Ci* 

without which Its usefulness is diminished, In the 

following, we shall show that Ci’s obey P set of renormalization 

group equations and can be calculated. 

Let us first recall that we are dealing with a theory 

with massless gluons and massless quarks. In order to 

ovoid mass singularities and at the same time to assure 

the decoupling of heavy quarks, we are instructed to 

choose a subtraction point n for Green’s funcrions at sow 

Euclidean point (u’ S-C N’). 

This procedure necessarily introduces operarors which 

have ‘relevant’ dimension four, although their naive mass 

dimension is six. For examp’le, the opeiator Fa 

has a piece n2 o,g - n*(-$ Fives”]. 

TV (a2+*g)F; 

whose relevant dimension 

is four. Ue shall regard 04g as an independent operator. 

There are then two choices we can make with regard to its 

renormalization. If we take it as a dimension six operator, 

then oversubtraction is called for. On the other hand, we 

may count it ils a dimension four operator, then the subtraction 

should be normal. 

For the fermion operators, let us subtract such that . 
chirnl invariance is respected. Then, we shall induce an 

operator T((iD)L-~2)iP$. Again, the part u*~~~--lr VP+ 27 
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play be regarded either as a dimension four or a dimension six 

operaror in subrracrion. 

AS WC explained earIier. we are quite free KG pick 

either of these alternatives. We find ir convenienK Ko 

regard operators like O;I and Oa2 as dimension four operaKOrs 

an4 subtract them r.ormally. The reason is that otherwise when 

u-e cone to decoupling the renornaliaarion group equations, 

we have to express the oversubtracted operators in terms 

of the noanally subtracted ones in order co form an independent 

basis. This efforr is wmbcirsome and’ unnecessary. 

Let IBmF be Khe light Green’s funcrions with B exrernal 

gluons and F exremal light quarks. ;B.F . ~11 be similarly 

,dcfined. Ghost externa1 lines can be added, but let us not 

do so at this point. Then Eq. (1-l) is written as 

;B,F . rB.F + 5 1 ‘Na ’ a@F (ON.&) (IV-I) 

N.a . . 

where N denotes the dimension of the operators and a is an 

index to label different operators of the same dimension. ’ 

Ke shall list and give a detailed discussion of these 

operators in a subsequent paper. For. the present purposo, 

~11 se need to know is that N - 4.6. All operators will 

he normalized at the subtraction point u to their tree 

vertex values. 

It is important to note that the.normaliration 
‘z3.P conditions imposed on r. and rBgP uiL.Z rotate C4,‘r 



Ko Cbb’5 in a simple way. For example. ler cs drmazd thar 

(r~vo,f2*o) and (Pov2u~o*2) should sarisfy. respectively, 

K!X sszric normalization ii!: diKions aK tbc scb:racKioz poic;. 

?he% Khe CoeffiCien; fuXKiOz for + Fa Q .P. w.. 2,a zaus~ be the 

saze as -haK for v 2 042; likewise, the coefficiect f.zcKioz 

for ib(iD)'iDO equals rhat of ~'04~. BeCGSt Of Kki5. , 

we will oaly need to solve Kke l quariozs for C6bP~~. 

By standard argumezr, the scaling eqcrKiocs 5: the 

lighr Kheoty 8re 

(p & c Bg $ - 8, k - By8 - FyF)rBWF 9 0 (IV-?) 

a a a 
f(u~++g~+~8,~--Yg - FyF)6Wa,Nb 

+ &Jb) ‘B’F(or;b) - ’ (IV-S) 

where we have taken the convention to sum over repeated 

indices and 

s,-u~t-9. 8,- 4 = 

9YF = I& Ln LF, 2yg - u & En ZB . 

'E.la,Nb - @II k Z-l)Mp,Nb(- 0. for MM (IV-41 

2 is the operator mixing matrix 

rE$ (*I - z~a’2. z;F’2 (tel]Ma,Nb +*(o& 

(W-5) 



For rhe full rheory. we have 
a 

c” zii 
: -; s’j+-;:-B; 
+Bgz+ Msi 035 B - F;$ gBwF-U 

(IV-61 

where the anomalous dimensions are similarly defined. 

The only new symbol is 

%I - u f& N (IV-7) 

which uill give l/&f4 effects and hence will be ignored. 

h’e substirure Eq. (XV-l) into Eq. (IV-6) and make Use 

of Eqs. (iv-2.3). This gives 

2 

> 

(~6~ $ l ~6, & - BAY~-FAY~)~ 
B,F 

‘;;c” 
l rB*F(o)J rcy. k * BP & + 6, aa L, %a,Kb 

-Y&b) cNb - ’ 

where 

,z - 
3 ASg - sg - fig* etc. (W-9) 

and ‘t’ stands for transposition of the matrix. :!ote that 

Fq. (W-8) is an inhomogencous equation for CNb’s due to the 

presence of the first part. Norcover. Ag’f and Ay’s contain 

large 1~‘s. Thus, as it stands, this equation is not 

‘particularly useful. The same apparent difficulty was 

encountered in I and was resolved with’the use of certain 

counting identities. This method works here as well. 

(W-8) 



3y a sfmtlar coasiderasion as in I, WC czr easfly prove 

the. fol1swir.g ccczcing identiries 9 

rBaF (Odl) - ; rB*$ 

+.F (042, . (a k _ 5 ‘0 8) 3.2: 
E’L _ 

rBwF (oa5) - g & rBtF + 2 rBvF (oa2) 

rBbF (oqql - 0 (W-10) 

where the newly inrrodcced operators are 

0:,-i 
I 

d4x ‘3 A; . ai: ya [D%),! 

u 
oo4 - i 4 d x a,, c, [D”.~I, (IV-Xl) 

5 is the action corresponding r,o deff of Eq. (II-S) withour 

the gauge firing term. 041 through Oq4 arc rhe only 

operators of dimension four which appear in the facrcrintion 

formula. Now. the crucial point is that with the use of 

Eq. (IV-lo), we can write. the first part of Eq. (W-8) as 

U2 tAEg k l Ab, $= - 8Ayg - FAyF] 

- C’4.x rB*F(04a) (W-12) 

where Cia are independent of B and F. (They may be expressed 

in terms of A8@s, Ay’s, etc., but the details are not needed 

fey ow purpose.) Substituting Eq. (W-12) into Eq. (IV-g), 

we obtain .O 
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rB’F(o&,)[(r $i l sg 6 l 8, &$ 66a,6b-&,,jb} C6b 

+ rBnF(oqa) (Ci, + (U 5 + sg $ l 6, k) C4r 

- y:a,4b ‘4b - Yia,6b ‘6b’ n 0 
(IV-13 

With this form, we may invoke the independence of the operatprs 

and assert that the equations for C6b decouple from the TtSt, 

i.e. 

a’ 8.6 f(e G 
l sg rii o k) ‘6a,6b - Y:a16b) ‘6b - ’ 

‘(IV-14) 

This is the desired set of equations. 

Pi’e shall give in a separate paper an explicit CalCulatiOn 

based on this work with application to e*e- * hadrons. 

\ 
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V. CONCLUSION 

We have used W-T identities due to SRS srzxsfomations 

: to prove rho facroziration formula Eq. (I-1) for QCD, 

which rakes srock of heavy quark effects in lcw eneray : 

light quark and gluon physics. It is amusing to note the 

accomplished simplification. compared with I. 

Our method gives a precise meaning to the notion of an 

effective Lagrangisn; in particular, a well-prescribed 

renormalization procedure for the local operators is 

shown to be self gcneratcd by the theory. This is a mjor 

distinction over the naive approach, where one is nagged 

by issues of renonarlirability of the effective interaction. 

Note further that the coefficient functions or, 

equivalently, the effective couplings can be reliably 

calculated to any order of accuracy iman asymptotically 

free theory!OHe need to account for only the nearby heavy quarks 

at any energy. The far away quarks will be.suppressed by 

asymptotic freedom, in addition to the factor l/M’. 

In a companion. articlei’ue shall give a detailed 

discussioa of the structure of the operators and an 

explicit calculation of the anomalous dimensions to one 

loop order. The application to e*e- - hadrons will be used 

as an exomple of our approach. There, q* - the energy 

squared of t’ B virtual photon - if quite large. He ma; 
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compure opersor anrrir elements in pouers of the running 

coupling consfat z(q*j via Eq. (IV-S). 
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FIGURE CAPTIONS 

Fig-l. A fourth order diagram whose heavy mass dependence is to be 

c;rracted. R denotes renormalization of the divergences of 

the Green’s functions. 

Fig.2. The heavy mass dependence is isolated from the vacuum 

polarization tensor in the form of yo1- Note that 

the rcnoraalization of 01, denoted by R’, can be differently 

chosen froa R. 
cl 

Fig.S. Further he&y rpass dependence is isolated after q Ol 

has been extracted. This is denoted by 3 02’ M 

Fig.4. The fowth order graph of Fig. 1 is reorrzngcd. ?.Lq c3n 

be discarded to the acsuracy of 0(1/X2]. 
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